
What’s the Diff?
Developing with Git and GitHub

First Things First...

≠

What’s Git?

● Distributed Version Control System
● Originally developed by Linus Torvalds
● Allows developers to easily build, share, test, and contribute

to software development
● 100% Cross platform - Linux/OS X/Windows
● Highly extensible and customizable
● Easy to learn and free to use!

What’s GitHub?

● Service that hosts Git repositories for you
● Extends Git’s functionality by introducing a new, social

network-like featureset
● GitHub users can easily collaborate, share code, and

contribute to Open Source projects
● Many large OS projects hosted here
● ~20 million users, ~57 million repos

Git is not GitHub

● Git is its own thing, you can use Git without GitHub
● Git can run 100% locally, as well
○ In fact, Git is primarily local

● GitHub as a platform has substantially extended Git’s
featureset

● Many other platforms provide Git as a service, along with
features similar to GH (see: GitLab, Bitbucket)

Git and GitHub: Like +

● Easy documentation (READMEs, Wikis)
● Issue tracking and Pull Requests
● Social networking (mentions, threads etc)
● Project analytics and data visualizations
● Third-party service integrations
● Free web hosting with GitHub Pages
● Easy-to-use web UI
● Much, much more!

● Powerful, decentralized version control
● Extremely flexible and scalable
● Failsafe, high degree of data integrity
● Lightweight and easy to use

Git Basics

Creating
Repositories

Creating
Repositories

(For Realsies This Time)

Creating a Repository

Each Git repository has its own directory, you
can’t start using Git until you initialize one.

There are two ways to make a Git repository:

● Remotely, you can create a Git repo on

your service of choice (i.e. GitHub)

● Locally, you can simply run git init
○ If you create a local repo without a remote (e.g. setting

an origin), those changes will stay entirely on your

machine until pushed

$ git init

Cloning Repositories

● Git repositories can be copied very easily
○ This is called “cloning”

● Creates a local copy of a remote Git repo,

which you can immediately start making

changes to

● By default, a clone will include all historical

versions of every file in the repo
○ This behavior can be altered (for example, with

shallow clones)

$ git clone https://github.com/adafruit/circuitpython.git

Forking Repositories

● GitHub Specific
● Makes a complete copy of

another user’s repository,
cloning it to your account

● After forking, you can develop
independently on your own,
or make changes and open a
pull request on the source
repository (more on that later)
○ smash that Fork button

Add, Commit,
Push, and Pull

Add

● There are two types of files in Git:
○ “Tracked” files are files being managed by git

○ “Untracked” files are not

● So, git add is the first step in a commit
○ Because add stages your changes

● Git won’t track changes to files you

haven’t asked it to (i.e. staged) yet
○ There are some exceptions to this (more on

that later)

$ git add my_code.js
or

$ git add .

Commit

● Now that you’ve added your
changes, it’s time to stage
them with a commit

● Commits are used to track
changes to files
○ As you make changes to one or

more files, you “check in” those
changes by committing them

● File versions can be compared
across commits
○ You can also roll back changes

made to a file between commits

$ git commit -m “My Fantastic Commit”

Pushing and Remotes

● git pushwill send your
local changes (commits) to a
destination repository known
as a “remote”
○ Think of it like syncing up your

local and remote repositories
○ This is what actually publishes

your changes on GitHub

● If no remote is specified, you
can add one like so:
○ git remote add origin

<repo url>

$ git push <remote destination> <branch name>

Pull

● git pullwill retrieve the
most recently committed
changes from the origin
○ You can also specify specific

origins and branches, if you like

● Good idea to do this semi-
regularly, so you can stay up
to date with everyone else’s
changes

$ git pull <remote origin> <branch
name>

Diffs

● Show how a file has changed,
line by line

● Diffs compare versions of a file
between commits, or across
branches (more on that later)

● Insertions (green) have been
added

● Deletions (red) have been
removed

● Won’t work on binary files, but
they’re perfect for source code

$ git diff [file]

Branching and
Merging

Branches

● Disposable copies of your
code at a point in time

● Allows features to be
developed independently

● Prevents stepping on others’
toes

● Enables you to bring your
changes into the main project
through “merging”

$ git branch <branch name>
$ git checkout <branch name>

or, simply:
$ git checkout -b <branch name>

to delete:
$ git branch -d <branch name>

Merging: Conceptual Overview

Merging

● Merging will take the changes in one branch
and integrate them into another one
○ This is performed using git merge

● Merging will merge all changes, commit
histories, etc from the source branch into
the destination branch

$ git checkout <branch you want to
merge into>

$ git merge <branch you want to
merge changes from>

Pull Requests

● GitHub-specific

● Effectively a wrapper around Git’s
already existing merge command, but
adds social features into the mix

● Allows repository owners to easily
manage, view, and comment on new
features that contributors want to
bring in

github.com/ctrezevant/git-workshop

Let’s practice!

Un-F%&$ing
Things

Practical application of Git against Murphy’s Law

Git log: Your Source of Truth

● Running git logwill show
you the full list of commits in
your repository, for the
current branch and location of
HEAD

● This is just useful, in general

$ git log

Git reset

● Everyone makes mistakes
● Sometimes these mistakes

mean we have to nuke some
changes
○ git reset is here to help

● Resetting will revert the
repository’s state to how it
was at the commit you specify

$ git reset <hash of commit you want to revert to>

Git blame

● git blame teaches us to be
accountable for our actions

● Blame will show you:
○ A list of commits on that file
○ Who’s responsible for those

changes
○ The actual changes made in

those commits

$ git blame <path to file>

Git status

● git statuswill show you
the current branch you’re on

● It’ll also show you whether
there are unstaged changes or
untracked files in your
repository

$ git status

Merge conflicts

● Merge conflicts happen when
people step on each other’s
toes

● git status and git pull will
both tell you whether
conflicting changes are
incoming

● Conflicting changes will be
placed in a file for manual
resolution

● Best way to avoid: pull
changes often,
communication is key!

More Cool Stuff

GitHub Student Pack

Many tech organizations offer products and
services to young and impressionable minds students
through GitHub, for free or reduced pricing.

Notable perks include:

● Free, unlimited private GitHub repos
● $110 AWS Credit
● $50 credit for new DigitalOcean users
● Free domain name + SSL cert
● Stripe platform credit
● Free private builds on Travis CI
● Unreal Engine

education.github.com/pack

Continuous Integration

● Automatically builds, tests,
and deploys your project as
you develop

● Will report the status of those
tests back to you

● Completely transparent, runs
automatically and behind the
scenes

● Great way to ensure you’re
shipping working code

Other Integrations

● GitHub features a wide variety
of services you can deploy
with a click

● Many of these exist to help
make software development
easier
○ Kind of like IFTTT, but with Git as

a trigger

● GitHub also has an open and
well documented API, that you
can use to build your own! github.com/marketplace

Congratulations
You can now do Git things!

Fork Me on GitHub

@charlton on Slack

github.com/ctrezevant

www.ctis.me

ctis.me/s/git

Extra links, docs, etc:

